睿祺無鎖孔智能防盜門:人工智能與認(rèn)知科技
1、人工智能的定義
人工智能領(lǐng)域苦于存在多種概念和定義,有的太過有的則不夠。作為該領(lǐng)域創(chuàng)始人之一的Nils Nilsson先生寫到:“人工智能缺乏通用的定義?!?一本如今已經(jīng)修訂三版的權(quán)威性人工智能教科書給出了八項(xiàng)定義,但書中并沒有透露其作者究竟傾向于哪種定義。對(duì)于我們來說,一種實(shí)用的定義即為——人工智能是對(duì)計(jì)算機(jī)系統(tǒng)如何能夠履行那些只有依靠人類智慧才能完成的任務(wù)的理論研究。例如,視覺感知、語音識(shí)別、在不確定條件下做出決策、學(xué)習(xí)、還有語言翻譯等。比起研究人類如何進(jìn)行思維活動(dòng),從人類能夠完成的任務(wù)角度對(duì)人工智能進(jìn)行定義,而非人類如何思考,在當(dāng)今時(shí)代能夠讓我們繞開神經(jīng)機(jī)制層面對(duì)智慧進(jìn)行確切定義從而直接探討它的實(shí)際應(yīng)用。值得一提的是,隨著計(jì)算機(jī)為解決新任務(wù)挑戰(zhàn)而升級(jí)換代并推而廣之,人們對(duì)那些所謂需要依靠人類智慧才能解決的任務(wù)的定義門檻也越來越高。所以,人工智能的定義隨著時(shí)間而演變,這一現(xiàn)象稱之為“人工智能效應(yīng)”,概括起來就是“人工智能就是要實(shí)現(xiàn)所有目前還無法不借助人類智慧才能實(shí)現(xiàn)的任務(wù)的集合?!?
2、人工智能的歷史
人工智能并不是一個(gè)新名詞。實(shí)際上,這個(gè)領(lǐng)域在20世紀(jì)50年代就已經(jīng)開始啟動(dòng),這段探索的歷史被稱為“喧囂與渴望、挫折與失望交替出現(xiàn)的時(shí)代”——最近給出的一個(gè)較為恰當(dāng)?shù)脑u(píng)價(jià)。
20世紀(jì)50年代明確了人工智能要模擬人類智慧這一大膽目標(biāo),從此研究人員開展了一系列貫穿20世紀(jì)60年代并延續(xù)到70年代的研究項(xiàng)目,這些項(xiàng)目表明,計(jì)算機(jī)能夠完成一系列所本只屬于人類能力范疇之內(nèi)的任務(wù),例如證明定理、求解微積分、通過規(guī)劃來響應(yīng)命令、履行物理動(dòng)作,甚至是模擬心理學(xué)家、譜曲這樣的活動(dòng)。
但是,過分簡單的算法、匱乏的難以應(yīng)對(duì)不確定環(huán)境(這種情形在生活中無處不在)的理論,以及計(jì)算能力的限制嚴(yán)重阻礙了我們使用人工智能來解決更加困難和多樣的問題。伴隨著對(duì)缺乏繼續(xù)努力的失望,人工智能于20世紀(jì)70年代中期逐漸淡出公眾視野。
20世紀(jì)80年代早期,日本發(fā)起了一個(gè)項(xiàng)目,旨在開發(fā)一種在人工智能領(lǐng)域處于領(lǐng)先的計(jì)算機(jī)結(jié)構(gòu)。西方開始擔(dān)心會(huì)在這個(gè)領(lǐng)域輸給日本,這種焦慮促使他們決定重新開始對(duì)人工智能的投資。20世紀(jì)80年代已經(jīng)出現(xiàn)了人工智能技術(shù)產(chǎn)品的商業(yè)供應(yīng)商,其中一些已經(jīng)上市,例如Intellicorp、Symbolics、和Teknowledge。
20世紀(jì)80年代末,幾乎一半的“財(cái)富500強(qiáng)”都在開發(fā)或使用“專家系統(tǒng)”,這是一項(xiàng)通過對(duì)人類專家的問題求解能力進(jìn)行建模,來模擬人類專家解決該領(lǐng)域問題的人工智能技術(shù)。
對(duì)于專家系統(tǒng)潛力的過高希望徹底掩蓋了它本身的局限性,包括明顯缺乏常識(shí)、難以捕捉專家的隱性知識(shí)、建造和維護(hù)大型系統(tǒng)這項(xiàng)工作的復(fù)雜性和成本,當(dāng)這一點(diǎn)被越來越多的人所認(rèn)識(shí)到時(shí),人工智能研究再一次脫離軌道。
20世紀(jì)90年代在人工智能領(lǐng)域的技術(shù)成果始終處于低潮,成果寥寥。反而是神經(jīng)網(wǎng)絡(luò)、遺傳算法等科技得到了新的關(guān)注,這一方面是因?yàn)檫@些技術(shù)避免了專家系統(tǒng)的若干限制,另一方面是因?yàn)樾滤惴ㄗ屗鼈冞\(yùn)行起來更加高效。
神經(jīng)網(wǎng)絡(luò)的設(shè)計(jì)受到了大腦結(jié)構(gòu)的啟發(fā)。遺傳算法的機(jī)制是,首先迭代生成備選解決方案,然后剔除最差方案,最后通過引入隨機(jī)變量來產(chǎn)生新的解決方案,從而“進(jìn)化”出解決問題的**方案。
3、人工智能進(jìn)步的催化劑
截止到21世紀(jì)前10年的后期,出現(xiàn)了一系列復(fù)興人工智能研究進(jìn)程的要素,尤其是一些核心技術(shù)。下面將對(duì)這些重要的因素和技術(shù)進(jìn)行詳細(xì)說明。
1)摩爾定律
在價(jià)格、體積不變的條件下,計(jì)算機(jī)的計(jì)算能力可以不斷增長。這就是被人們所熟知的摩爾定律,它以Intel共同創(chuàng)辦人Gordon Moore命名。Gordon Moore從各種形式的計(jì)算中獲利,包括人工智能研究人員使用的計(jì)算類型。數(shù)年以前,先進(jìn)的系統(tǒng)設(shè)計(jì)只能在理論上成立但無法實(shí)現(xiàn),因?yàn)樗枰挠?jì)算機(jī)資源過于昂貴或者計(jì)算機(jī)無法勝任。今天,我們已經(jīng)擁有了實(shí)現(xiàn)這些設(shè)計(jì)所需要的計(jì)算資源。舉個(gè)夢幻般的例子,現(xiàn)在**一代微處理器的性能是1971年**代單片機(jī)的400萬倍。
2)大數(shù)據(jù)
得益于互聯(lián)網(wǎng)、社交媒體、移動(dòng)設(shè)備和廉價(jià)的傳感器,這個(gè)世界產(chǎn)生的數(shù)據(jù)量急劇增加。隨著對(duì)這些數(shù)據(jù)的價(jià)值的不斷認(rèn)識(shí),用來管理和分析數(shù)據(jù)的新技術(shù)也得到了發(fā)展。大數(shù)據(jù)是人工智能發(fā)展的助推劑,這是因?yàn)橛行┤斯ぶ悄芗夹g(shù)使用統(tǒng)計(jì)模型來進(jìn)行數(shù)據(jù)的概率推算,比如圖像、文本或者語音,通過把這些模型暴露在數(shù)據(jù)的海洋中,使它們得到不斷優(yōu)化,或者稱之為“訓(xùn)練”——現(xiàn)在這樣的條件隨處可得。
3)互聯(lián)網(wǎng)和云計(jì)算
和大數(shù)據(jù)現(xiàn)象緊密相關(guān),互聯(lián)網(wǎng)和云計(jì)算可以被認(rèn)為是人工智能基石有兩個(gè)原因,**,它們可以讓所有聯(lián)網(wǎng)的計(jì)算機(jī)設(shè)備都能獲得海量數(shù)據(jù)。這些數(shù)據(jù)是人們推進(jìn)人工智能研發(fā)所需要的,因此它可以促進(jìn)人工智能的發(fā)展。第二,它們?yōu)槿藗兲峁┝艘环N可行的合作方式——有時(shí)顯式有時(shí)隱式——來幫助人工智能。
免責(zé)聲明:凡注明稿件來源的內(nèi)容均為轉(zhuǎn)載稿或由企業(yè)用戶注冊(cè)發(fā)布,本網(wǎng)轉(zhuǎn)載出于傳遞更多信息的目的;如轉(zhuǎn)載稿和圖片涉及版權(quán)問題,請(qǐng)作者聯(lián)系我們刪除,同時(shí)對(duì)于用戶評(píng)論等信息,本網(wǎng)并不意味著贊同其觀點(diǎn)或證實(shí)其內(nèi)容的真實(shí)性。